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Abstract
The effect of orbital degeneracy on metallic ferromagnetism is considered in
the strong coupling limit of the Hubbard model within a generalized Roth
approximation. For concentrations of less than one electron per lattice site and
forbidden double occupancy we find that orbital degeneracy favours magnetic
polarization on different lattice structures. The effect is strong enough to
induce a ferromagnetic ordering even on frustrated lattices, where polarization
is excluded in the absence of degeneracy. We discuss the physical origin of the
new results in terms of competition between tendencies towards localization
and delocalization.

1. Introduction

Metallic ferromagnetism in narrow band systems has been a controversial issue of condensed
matter physics for a long time. This controversy stems from the dual character of the electrons
responsible for polarization, i.e. they are itinerant electrons described by band theory showing,
at the same time, various properties that have been long attributed to localized moments.
When the on-site Coulomb interaction is strong, the electrons can minimize the Coulomb
repulsion due to the Pauli principle by preferably occupying the same spin sector, resulting
in a spin polarized ground state. The Hubbard model [1] was initially introduced to explain
magnetism of correlated itinerant electrons in transition metals; however, it turned out to be
particularly difficult to establish the existence of ferromagnetic ordering in approaches beyond
mean-field theories. It is well known that for the infinite repulsion and for any dimension
d > 1 this model has a fully polarized ferromagnetic ground state on a bipartite lattice with
exactly one hole (Nagaoka theorem [2]). However, the theorem does not address either the
finite hole concentration or the finite repulsion cases, these remaining a matter of debate up to
the present, despite a large number of both analytical and numerical works on this topic [3].
A significant progress has been achieved recently in understanding the infinite-U limit of the
non-degenerate Hubbard model (NHM), e.g. [4–6]. In [7] exact cluster diagonalization and
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quantum Monte Carlo calculation studies have found that the paramagnetic state becomes
unstable against a non-saturated ferromagnetic phase at a finite hole density. Although this is
a very important proof of the existence of a ferromagnetic ordering in a 2D Hubbard model
at finite hole concentration, it is still desirable to clarify the physical mechanisms causing
polarization on different lattice structures. In particular, it is known that ferromagnetism
of non-bipartite lattices is strongly dependent on the sign of the hopping amplitude. For
example, for a face centred cubic lattice (FCC) with negative hopping parameter (t < 0)
there is a general consensus that ferromagnetic polarization does not occur at all, while for the
opposite sign ferromagnetism is expected in a very large region of concentrations [4]. This
dependence is attributed to the electron–hole asymmetry of the density of states. It has also been
pointed out that unlike antiferromagnetism or superconductivity, metallic ferromagnetism is
generally a strong coupling phenomenon as far as the original Hubbard model is concerned [8].
Therefore a great deal of research has been focused on what additional factors should be
included to describe the essential physics of ferromagnetism. Among others, it is important
to consider different Coulomb interaction matrix elements within a single band model [9]
or the orbital degeneracy [10] that allows for intra-atomic ferromagnetic Hund coupling, or
take both generalizations into account [11]. Besides being a natural component of many real
magnetic systems, orbital physics has recently attracted much research interest motivated by
the discovery of materials with new properties related to orbital degrees of freedom, such as
colossal magnetoresistance manganites [12], superconductivity in fullerides [13], spin triplet
pairing in ruthenates [14], new types of ordering and elementary excitations [15] and others.

The aim of the present paper is to consider a different aspect of the orbital degeneracy
related to the kinetic energy of correlated electrons, which is already present in the first
order of perturbation theory. We will consider the case of a relatively small concentration
of less than one electron per lattice site and the strong coupling limit with excluded double
occupancy. Under these restrictions we may neglect some interactions, such as the Hund
coupling, superexchange or double exchange mechanisms, which are responsible for a rich
variety of charge, orbital and spin orderings at finite coupling strength [16]. The major role
of the Hund parameter in orbitally degenerate systems has been emphasized already in earlier
papers [17–19]. For instance, it has been rigorously proved [20] that for the strong coupling
limit of the degenerate Hubbard model (DHM) an infinitesimal value of this parameter is
sufficient to stabilize metallic ferromagnetism even on a periodic chain, where ordering is
strictly excluded in the absence of degeneracy [21]. Instead, our aim is to focus on the effect
of an enlarged Hilbert space provided by the degeneracy and to reveal another mechanism
for ferromagnetism, independent of those mentioned before. On the one hand, our analysis
shows that the presence of orbital degeneracy reinforces ferromagnetism on bipartite lattices,
despite the expectation that it would favour a disordered state [22] in the considered limit; on
the other hand, degeneracy offers a new route to overcome the geometrical constraints that
inhibit ferromagnetism on frustrated lattices. The proposed physical interpretation of these
results is rather general and can be useful for a deeper understanding of itinerant magnetism.

To investigate the above issues one cannot rely on the standard weak coupling perturbation
theory, and we employ the approach by Roth [23] generalized to the case of orbital degeneracy.
This approach is related to the irreducible Green function method [24, 25], the spectral density
approach [26], the method of projection operators [27], the composite operator method [28],
variational wavefunction [29] and some others. Its reliability in the strong coupling limit of
the NHM has been demonstrated in previous papers [30] and resides in conservation of higher
spectral moments. As demonstrated in [31], it corresponds to the strong coupling canonical
perturbation theory and therefore incorporates the correlation effects in a regular way. In this
sense the approach is superior to the coherent potential approximation or to the Hubbard I
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and III approximations [32]. The generalized Roth approach can therefore serve as a good
mean-field starting point for a proper description of dynamical effects; however, this goes
beyond the purpose of the present paper. Inclusion of dynamical corrections requires a further
development of the theory and remains an open problem even for the NHM [33]. Nevertheless,
we do not expect that our predictions on the behaviour of DHM in the considered limit will be
qualitatively changed by dynamical corrections since we find that the Roth approach agrees
well with recent numerical studies on the strong coupling limit of NHM (see below) as well as
with the extension of the Nagaoka theorem to orbital degeneracy proved in [34]. Comparison
with some other approaches is also discussed below.

2. The DHM model and the Roth approach

We consider the following Hubbard Hamiltonian for degenerate orbital states:

H = H0 + H1, H1 =
∑
λ,σ

∑
(i, j)

ti j c
†
iλσ c jλσ ,

H0 = U‖
∑
i,λ

niλ↑niλ↓ + U⊥
∑
i,σ

∑
(λ,ν)

niλσ niνσ̄ + (U⊥ − J )
∑
i,σ

∑
(λ,ν)

niλσ niνσ

−J
∑
i,σ

∑
(λ,ν)

c†
iλσ ciλσ̄ c†

iνσ̄ ciνσ + J
∑

i

∑
λ �=ν

c†
iλ↑c†

iλ↓ciν↓ciν↑.

(1)

H0 is the atomic Hamiltonian, where i is the lattice site (i = 1, . . . , N), and λ and σ stand
for orbital and spin index, respectively (λ = 1, . . . , L, σ̄ = −σ ). The parameters U‖ and U⊥
stand for the on-site intra- and inter-orbital Coulomb repulsion, and J is the Hund coupling.
The energies are measured with respect to the chemical potential in units of the non-interacting
bandwidth W . H1 is the kinetic term describing hopping of a given spin between identical
orbitals on nearest neighbour sites. It is also assumed that tii = 1

N

∑
k ε(k) = 0. As explained

in the introduction, we consider the strong coupling regime with electron concentration n < 1,
and exclude double occupancy to focus on new effects of the order of W . It will become clear
that this scale characterizes a rather non-trivial effective interaction, although in the considered
limit H0 describes a hard core bare interaction.

To calculate the retarded Green function (GF), the matrix propagator of a generalized
state-vector �Aiσ = {Aα

i }, we chose the basis set α of local operators diagonalizing the atomic
limit. In the case of a two-fold degeneracy, and neglecting the last two terms in H0, the set
α has eight components (see the appendix). The local density operators, ni1σ̄ ≡ c†

i1σ̄ ci1σ̄ ,
etc, play the role of projectors onto states with definite occupation numbers. The equation of
motion of the generalized state-vector is considered in a split form:

i
d

dt
Aα(t) = [

Aα(t); H
] = K αγ Aγ (t) + Bα(t).

It is then decoupled according to the orthogonalization and linearization (i.e., neglecting Bα)
procedure by requiring that〈{[

Aα(t); H
] − K αγ Aγ (t), Aβ†(t)

}〉 = 0, (2)

where 〈{··; ··}〉 stands for the quantum statistical average of an anticommutator. This allows
for obtaining a self-consistent expression for the frequency-dependent Green function in
terms of zero-, Mαβ

0 (i, σ | i ′, σ ′) = 〈{Aα
iσ ; Aβ†

i ′σ ′ }〉, and first-order, Mαβ

1 (i, σ | i ′, σ ′) =
〈{[Aα

iσ ; H ]; Aβ†
i ′σ ′ }〉, spectral moment matrices:

Gαβ(ω) = Mαγ1

0 (ωM0 − M1)
−1
γ1γ2

Mγ2β

0 . (3)
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Corrections to the Hubbard I approximation [1] are contained in the first-order spectral moment
matrix, since the static expectation values are determined self-consistently from the spectral
density

Sαβ

iσ (ω) = − 1

π
Im Gαβ(iσ, i ′σ ′|ω + i0+) (4)

instead of decoupling the intersite averages into single site products. To describe these
corrections it is important to specify first the structure of the Hubbard I approximation that
represents an infinite chain of atomic Green functions Ga(ω) connected by nearest neighbour
hopping:

G1,1(k, ω) = 〈〈c1σ |c†
1σ 〉〉k,ω = 1

G−1
a (ω) − ε(k)

,

G2,1(k, ω) = 〈〈n1σ̄ c1σ |c†
1σ 〉〉k,ω = Ga2(ω)

Ga(ω)
× 1

G−1
a (ω) − ε(k)

, . . .

G8,1(k, ω) = 〈〈n2σ n2σ̄ n1σ̄ c1σ |c†
1σ 〉〉k,ω = Ga8(ω)

Ga(ω)
× 1

G−1
a (ω) − ε(k)

, . . .

, (5)

where ε(k) is the Fourier transform of the transfer integral and the atomic Green functions Ga

are described in the appendix. The corrections mentioned above can now be described as static
energy shifts of the frequency ω and of the band dispersion ε(k) in the form of the Hubbard I
solution given by (5). These shifts are proportional to the transfer integral ti j as their source
is the commutation of �A with the kinetic energy operator. The shifts can be divided into two
categories: local and non-local. The local ones are determined by the ‘kinetic motion’ of the
projecting operators (ni1σ̄ , ni2σ̄ , ni2σ ) → (c†

i1σ̄ c j1σ̄ , c†
i2σ̄ c j2σ̄ , c†

i2σ c j2σ ), i.e. are proportional
to the expectation values of terms like

∑
j ti j c

†
i1σ̄ c j1σ̄ . For instance, the diagonal element

M2,2
1 (i, σ | j, σ ) is identical to the local term obtained by Roth [23] for the NHM (i = j ):

−
∑
l( �=i)

′
til

[〈(1 − niσ )c†
i1σ̄ cl1σ̄ (1 − nl1σ )〉 − 〈ni1σ c†

i1σ̄ cl1σ̄ nl1σ 〉]
= −

∑
l( �=i)

′
til

[〈(1 − ni1σ − nl1σ )c†
i1σ̄ cl1σ̄ 〉].

Due to orbital degeneracy new terms appear with the same features but involving the orbital
projection operators. For example, in the matrix element M7,3

1 (i, σ | i, σ ) (=M3,7
1 (i, σ | i, σ ))

we have

−
∑
l( �=i)

′
til

[〈(1 − ni1σ − nl1σ )ni2σ c†
i2σ̄ cl2σ̄ 〉].

The non-local corrections are given by the charge, spin, orbital, mixed spin-orbital and pair
fluctuations. For example, the non-local corrections contained in M2,2

1 and M3,7
1 are given

respectively by

ti j
[〈ni1σ̄ n j1σ̄ 〉 − 〈ni1σ̄ 〉〈n j1σ̄ 〉

+ 〈c†
i1σ ci1σ̄ c†

j1σ̄ c j1σ 〉 − 〈c†
i1σ c†

i1σ̄ c j1σ̄ c j1σ 〉],
ti j

[〈ni2σ ni2σ̄ n j2σ̄ 〉 − 〈ni2σ ni2σ̄ 〉〈n j2σ̄ 〉
+ 〈ni2σ (c†

i2σ̄ ci1σ )(c†
j1σc j2σ̄ )〉 − 〈(c†

j1σ c†
j2σ̄ )(ci2σ̄ ci1σ )ni2σ 〉].

In the following we will mainly consider the local corrections. The non-local ones require
lengthy but straightforward calculation and do not alter our main conclusions. Their effect
will be briefly discussed in the last section.
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To derive the strong coupling limit of the Green function (3) it is useful to rewrite the
expression (58) obtained in [23] for NHM in the following form:

〈〈akσ |a†
kσ 〉〉ω = 1

G−1
a (k, ω + TR(k)/ (1 − ni σ̄ ) ni σ̄ ) − ε(k) − TR(k)/ (1 − ni σ̄ ) ni σ̄

� 1 − ni σ̄ − 2 [ε(k)ni σ̄ (1 − ni σ̄ ) + TR(k)] /U + O(t2/U 2)

ω − ε(k)(1 − ni σ̄ ) + TR(k)/(1 − ni σ̄ ) + O(t2/U)

+
ni σ̄ + 2 [ε(k)ni σ̄ (1 − ni σ̄ ) + TR(k)] /U + O(t2/U 2)

ω − U − ε(k)ni σ̄ + TR(k)/ni σ̄ + O(t2/U)
.

It then becomes clear that the asymptotic expansion of the one-particle GF for the DHM should
have a similar ‘shifted pole’ structure. Indeed, as a result of straightforward calculation, we
obtain the following expression:

〈〈ckλσ |c†
kλσ 〉〉ω �

∑
α

Pα + O(t/U)

ω − E0
α − ε(k)Pα + Tα(k)/Pα + O(t2/U)

, (6)

where E0
α are the resonance energies corresponding to all the transitions between the atomic

states and Pα are the respective weight factors (the indicesλσ have been dropped for simplicity).
The poles Eα(k) = E0

α + ε(k)Pα − Tα(k)/Pα + O(t2/U) are shifted compared to the atomic
counterparts E0

α by quantities Tα(k) proportional to the transfer integral (see the appendix). In
the strong-coupling limit for concentrations n = ∑

λσ 〈nλσ 〉 < 1 double occupancy is excluded
and therefore only the lowest band is relevant. We then use the index λσ to label the band
energy Eλσ (k):

Eλσ (k) = εk Pλσ − 1

Pλσ

(
1

N

∑
j,ν �=λ

ti j
〈
c+

jνσ ciνσ

〉
+

1

N

∑
j,ν

ti j
〈
c+

jν−σ ciν−σ

〉)
, (7)

where Pλσ are the band narrowing factors, Pλσ = 1−∑
λσ �=νs 〈nνs〉. The partial densities 〈nλσ 〉

and the intersite correlators in (7) are then determined in a self-consistent way from (6). We
point out that both band narrowing and band shifts are composed of partial terms representing
each possible spin and orbital state. One can also see that the structure of the strong coupling
solution (6) and (7) remains unchanged for arbitrary degeneracy L. The expectation values
〈c+

jνσ ciνσ 〉 on the rhs can be interpreted as bond charges corresponding to symmetric (bonding)
or antisymmetric (antibonding) wavefunctions between sites i and j . Equation (7) shows two
relevant aspects, the band narrowing effects related to the factors Pλσ and the shifting of the
band, related to the bond charges that give a measure of the kinetic motion. Both effects
depend on L and the spin σ . In a complete form the band narrowing factors are supplemented
by dispersion corrections proportional to bond charges,similar to [9, 35]. It is worth mentioning
that the bond charge terms, previously introduced by Hirsch in [9] using a more complex model
containing intra-atomic exchange interactions or off-diagonal matrix elements of the Coulomb
interaction, in this scheme are directly generated by our strong-coupling approach.

3. Ordering in the limit of no double occupancy

To study the possible ordering we begin with the low density limit, where the disordered, fully
paramagnetic (PM), phase is known to be the ground state of the system. By considering
the possible instabilities of this state we take into account several criteria, which include the
calculation of various types of longitudinal susceptibilities, single spin and/or orbital flip and
a direct calculation of the total energy (see [6] for the NHM case):

EGS = 1

2N

∑
k∈B.Z.

∑
σ,λ

∫ εF

−∞
Sλσ (k,ω) [ω + ε(k)] dω. (8)
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The second criterion considers a process of ‘flipping’ an electron with momentum kF, at
the top of the occupied band, into the bottom of the one of unoccupied bands [31]. This
process generally involves a non-zero momentum transfer and, as shown in [29] for NHM,
results in the same instability criterion as the RPA transverse susceptibility (see also [36]).
In the PM phase at T = 0 the partial densities and the band narrowing factors are given
by 〈nλσ 〉 = n/2L = ∫ εF

WB
ρ (ε) dε, where ρ(ε) is the non-interacting density of states, and

Pλσ = P = 1 − n + n/2L. From the knowledge of the band energies and the partial
densities, we have analysed the instability of the paramagnetic state towards a spin and/or
orbital order at varying electron concentration by calculating the susceptibility for different
types of lattices. By adding a Zeeman term hM = h

∑
i,λ,σ σniλσ to the Hamiltonian, we find

the static paramagnetic susceptibility χ = (
δM
δh

)
h→0

. To calculate χ we have to determine the

excitation energies Eλσ (k) and the partial densities 〈nλσ 〉 = Pλσ
1
N

∑
k nF (Eλσ (k)) from (6) in

a self-consistent way up to the first-order terms in the field h. After straightforward calculations
we find

χ = 2L Pρ (εF)

(1 − n) + ρ (εF) εF [P + (1 − n) /P] + 2L Kρ (εF)
, (9)

where the Fermi energy εF is fixed by the self-consistency equation n = 2L 〈nλσ 〉. The kinetic
energy for a single band K is proportional to the sum over bond charges:

K = 1

N

∑
j

ti j
〈
c+

jνσ ciνσ

〉 = P
∫ εF

WB

ρ (ε) ε dε. (10)

We have first considered the case extremely unfavourable to polarization, that of frustrated
lattices with t < 0, FCC and triangular [4]. As a criterion for the instability towards magnetic
ordering, we have searched for the zeros of the denominator in (9) starting from the region of
low densities.

The susceptibility (9) contains several contributions. The Hubbard I approximation
corresponds to the first two terms in the denominator. It is easy to see that the latter is strictly
less than the former, even in the presence of a van Hove singularity. The same drawback is
shared by the coherent potential approximation [37]. Consequently these approximations are
unable to describe a polarized state even for simple bipartite lattices. The second term in the
square brackets corresponds to the one-loop approximation of the diagrammatic approach [38].
Also in this approximation the susceptibility remains finite for the FCC lattice in the whole
region of concentrations for any value of L. The last term generalizes Roth correction to the
degenerate case and, as will be shown below, is responsible for the phase transition into a
polarized state. In agreement with previous studies on NHM (L = 1), we find that for the
frustrated lattices the susceptibility never diverges and has only a weak peak when the band
filling reaches the energy corresponding to the van Hove singularity. However, already for
L = 2 the inverse susceptibility for the FCC lattice crosses zero at some finite concentration
nc (L), as shown in figure 1. This signals an instability towards transition into a polarized
state at a critical concentration lower than the one corresponding to the van Hove singularity.
A similar behaviour is observed for the triangular lattice. By increasing L the critical value
nc decreases further, reducing the region of the PM state on the phase diagram. The same
behaviour is also found for a bipartite square lattice, where the transition is already present at
L = 1. The critical concentration we find in this case, nc � 0.6, is in complete agreement
with the QMC results of [7]. The calculation of the critical concentration nc within the slave
boson approach for NHM [39] gives nc � 0.67; however, this critical value turns out to be
independent of the dimensionality of the lattice. Similar calculations for the DHM [22] in
the considered concentration range require finite values of Coulomb parameters and Hund
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Figure 1. Inverse static paramagnetic susceptibility for values of orbital degeneracy L > 1 (FCC
lattice, t < 0) versus electron concentration. The critical concentration, χ−1 (nc) = 0, is not
related to the van Hove singularity, as seen for L = 2.

coupling in order to obtain an instability of the fully disordered state. For triangular and
square lattices we find that as L → ∞, the critical concentration nc (L) reaches saturation
at values 0.38 and 0.32 respectively. The spin polarization, however, is not the only possible
instability in a degenerate system since the disordered phase can become unstable with respect
to orbital ordering as well. This can be probed by calculating a generalized susceptibility,
which instead of the Zeeman term considered above introduces fictitious fields coupled to
different possibilities to repopulate the orbital and spin states with respect to the initial equal
distribution of the PM phase. For instance, if L = 2 we may consider a spin-orbital term

−H
∑

i

〈
ni1σ − 1

3 (ni1−σ + ni2σ + ni2−σ )
〉
.

After carrying out this analysis we find the same critical value nc as for the spin channel
discussed above, that signals the onset of a spin-orbital order at this concentration.

A further insight into the instability of the PM phase comes from the analysis of the ground
state energy (8):

EPM = −|K | (P + 1) L + |K | (1 − P) L/P. (11)

The first term is the contribution of the band narrowing (see the first term in the rhs of
equation (7)), while the other one accounts for bond charge effects (corresponding to the
second term of (7)). The evolution of EPM with orbital degeneracy is shown in figure 2. At
small concentrations we find that degeneracy lowers the energy of the PM state, as expected.
However, for an intermediate concentration the behaviour is reversed, indicating the onset of
a new phase near the crossing point. To analyse which ordered state is realized at the critical
point, we have performed extensive calculations of the ground state energies corresponding
to different occupations of spin and orbital states mentioned earlier. We find that the lowest
energy state is polarized in such a way that a single spin and orbital state is preferred over
the others, 〈nλ=1,σ 〉, while the remaining ones are equally populated (or disordered), e.g. for
L = 2 we have 〈nλ=1,σ̄ 〉 = 〈nλ=2,σ 〉 = 〈nλ=2,σ̄ 〉 < 〈nλ=1,σ 〉. The energy corresponding
to this configuration decreases with orbital degeneracy, while the magnetization increases.
The behaviour of the magnetization for the FCC lattice is shown in figure 3 for L = 2, 3.
Calculations have been carried out also for the triangular lattice and for the bipartite (simple
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Figure 2. Energy of the fully disordered phase for the FCC lattice with t < 0 versus electron
concentration at different values of orbital degeneracy L .

Figure 3. Magnetization of the lowest energy polarized state at L = 2, 3. The dashed line
corresponds to saturation. The inset shows the energies of the PM and polarized ground states at
L = 2.

cubic and square) lattices, which all share the above features. For frustrated lattices with t < 0
the magnetization never reaches saturation, in contrast to the bipartite lattices, which acquire a
saturated moment at certain finite concentration larger than nc. We mention that the effect of the
non-local corrections to the band energy (7), that requires more complicated but straightforward
calculations, is essentially to enhance the tendency towards the polarized state without changing
the qualitative picture (e.g., nc is slightly shifted towards lower values). The reason for this
behaviour is that the non-local corrections describe different types of fluctuations or inter-site
correlation functions, which are the more significant, the more disordered is the ground state.
As has already been mentioned, these corrections contribute to the renormalization of the band
narrowing factors leading to an enhanced frustration of the disordered configurations. In other
words, their main effect is to favour polarization.

It should be noted that the well known electron–hole transformation [40] allows for
establishing a simple correspondence between the region of electron concentrations n < 1
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and that with n′ = 2L − n: equivalent results hold for the latter if holes are used instead of
electrons (for a non-bipartite lattice the sign of hopping should be reversed). One can see
from the analytic form of the generalized Roth approximation that this symmetry is conserved.
The limit of excluded double occupancy, which amounts to a hard core interaction (n < 1, U ,
U−J → ∞), has allowed us to reveal some important aspects of the correlated electron motion.
Beyond this limit the magnitudes of Hund and Hubbard U -parameters become important
(generally, U > J by physical arguments). The Hund exchange interaction favours atomic
polarization also in the case when the last two terms in the Hamiltonian (1) are neglected (Ising-
type truncation). Then using the full basis set chosen in the present paper (see the appendix)
allows for considering the possibility of a global polarization for arbitrary parameters. For
instance, in a recent paper [41] the case of strong but finite interaction in the two-fold DHM
has been studied within the slave boson approach for the truncated version of (1) with L = 2.
In agreement with arguments of earlier works (e.g., [42]) based on kinetic exchange between
degenerate orbitals, it has been found that ferromagnetic spin polarization exists in an extended
region of concentrations on a simple cubic lattice and is accompanied by antiferromagnetic
orbital ordering. We have investigated the possibility of such a superstructure in our strong
coupling limit and have found that the homogeneous ferromagnetic phase has a lower total
energy. As already mentioned, the superstructure is strictly excluded also for the Nagaoka
regime [34]. This result implies that a further investigation for large but finite coupling will
establish a critical line of transition between the two phases, or the existence of phase separated
regions. The rich variety of possible spin and orbital orderings of the DHM due to interplay of
different physical parameters reflects the situation observed in real materials, e.g. manganites.
However, this model also contains the possibility of describing anomalously large transfer of
spectral weight between excitations which is observed in spectroscopic measurements [43].
This effect is determined by the correlated nature of the energy bands of strongly interacting
electrons and depends on different factors. The simplest one is already contained in the
Hubbard I approximation (5) via the Gutzwiller-like weights of the atomic GF (A.1). In our
approach the additional contributions appear due to interplay of the kinetic energy projected
onto a separate band and the Coulomb parameters U and J , as shown in (A.2). It can be seen
that these contributions are increased as the interaction parameters are decreased. Although
the truncation of the Hamiltonian mentioned above is often used in the literature, the role of
‘transverse terms’ is generally not negligible and can be studied by such a generalization of the
basis set, which diagonalizes the complete Hamiltonian. This would generally result in a more
complicated form of the matrix Green function. The transparent structure we have described in
terms of frequency and dispersion shifts with respect to the Hubbard I approximation indicates
that it should be possible to identify an analogous one for the complete Hamiltonian too. On
the other hand, the existence of such a structure opens a possibility to generalize the dynamical
approach proposed in [44]. to the DHM. For the NHM, dynamical effects have been introduced
via a modified alloy analogy approximation by replacing the atomic energy levels with those
derived from the spectral density approach. Given that the simplest version of DHM with
L = 2 already results in an eight-pole GF, an important advantage of the present mean-field
solution is that it allows an equivalent and totally self-consistent description, while, as is well
known, there does not exist an algebraic solution which would allow for resolving the eight
sub-bands within the spectral density approach itself.

4. Discussion

The results described in the present paper can be understood in terms of competition between
itinerancy and localization. Indeed, one can notice that the latter is present in various scenarios
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of ferromagnetism and can be associated with strong coupling, van Hove singularities, flat
bands, asymmetric density of states with a peak in the vicinity of the band’s bottom or with
band narrowing effects, including the mechanism due to depletion of bond charges [35].
These factors are known to favour transition from a disordered to a polarized state. Our
strong coupling analysis has shown that the enlargement of the Hilbert space of states due
to the inclusion of orbital degeneracy enhances the tendency to ferromagnetic polarization
irrespective of the lattice structure. The effect turns out to be strong enough to induce the
transition on non-bipartite lattices or to significantly reduce the critical concentration for
bipartite lattices, shifting it away from the van Hove singularity, as in the case of a square
lattice. At very small concentrations the enlargement of the Hilbert space allows electrons
to gain more kinetic energy by delocalizing over a larger number of orbital and spin states
on the empty lattice sites, leading to a fully disordered ground state. As the concentration
is increased and the number of available empty sites is diminished, the fully disordered state
becomes inconvenient due to the enhancement of scattering processes. In other words, the
additional degrees of freedom introduce more frustration in the disordered configuration and,
as a result, favour polarization. These tendencies are described in our approach by the two
competing contributions to the total energy (11). The negative term in equation (11) describes
the kinetic energy gain due to the occupation of a larger number of spin and orbital states,
while the positive term accounts for the loss of energy due to scattering. The latter depends on
the magnitude of the bond charges, which in turn are related to the kinetic energy (∼L|K |).
This contribution starts to prevail at intermediate concentrations, giving rise to the typical
behaviour of EPM shown in figure 2. Orbital degeneracy affects in a positive manner both the
band narrowing (see the first term in the rhs of equation (7)) and the bond charges, increasing
the number of channels for kinetic motion (or the magnitude of the total bond charge). At
intermediate concentrations the increased bond charge associated with bonding states results
in an enhanced scattering. To reduce this energy loss, the system has to decrease the number
of bond charges associated with bonding states and increase those associated to antibonding
states. This, by virtue of the Pauli principle, implies a spin and orbital polarization. Indeed,
by taking a constant single particle density of states ρ(ε) = W−1 one can easily calculate
the bond charge corresponding to different phases B = ∑

λσ |Kλσ | /W . Let us compare the
fully disordered (PM), fully spin ordered and orbitally disordered (OD), and fully polarized
(F) phases:

BPM = BF

1 − n + n/ (2L)
> BOD = BF

1 − n + n/L
> BF = n

2
(1 − n) . (12)

One clearly sees a decrease of the total bond charge as the degree of polarization is increased.
From figure 4 one can also notice that in the fully disordered phase (PM) the largest increase
of the bond charge with L is achieved at L = 2. This naturally explains why the largest
drop in nc(L) takes place when L is increased from 1 to 2. The above arguments indicate
that polarization is associated not to a gain, but to a loss in kinetic energy, which allows the
system to gain more in potential energy by adopting a more localized state. This mechanism
of ordering caused by increased disorder in PM phase is not related to the lattice structure and
does not contradict the Nagaoka theorem, that finds the ground state corresponding to zero loss
in potential energy. Moreover, it is particularly pronounced for non-bipartite lattices where
geometrical frustration strongly opposes polarization. Indeed, when t < 0 these lattices favour
the formation of bonding states, as can be illustrated by the example of a single electron on a
triangle. The frustrated geometry thus leads to larger bond charges and respectively to a larger
scattering. In this case, the orbital degeneracy promotes a non-saturated ferromagnetism with
larger values of magnetization corresponding to larger values of L.
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Figure 4. Increase of the total bond charge with orbital degeneracy (L = 1, 2, 3) for the constant
single particle density of states in the fully disordered phase as compared to the fully polarized
phase (lowest curve).

The predicted effects of the orbital degeneracy suggest an extension of the numerical
analysis undertaken in [7] for finite dimensional lattices and a generalization of the exact
results of [5] for infinite dimensions. These effects are of the first order in bandwidth W and
should therefore be important also at finite coupling, where a number of other mechanisms are
important for an adequate description of real materials [3, 45, 46]. Nevertheless, the described
mechanism sheds a new light on the physics of metallic ferromagnets, most of which belong to
the class of materials with degenerate orbital states. Classical examples are the 3d elements Ni,
Co, Fe and their alloys [17, 47] or the rare earth molybdates R2Mo2O7 [48] with a t2g conduction
band, manganites [12] or the series of disulfide compounds Fex Co1−x S2 [49] characterized by
e2g orbitals and known to support ferromagnetism in a broad range of concentrations. For
instance, it is known that magnetization of Ni, which has an FCC structure and a concentration
of holes about 0.6, is close to saturation [50]. At present, the enhancement of metallic
ferromagnetism in orbitally degenerate systems has become a topic of more intensive study in
view of prospective applications in spintronics [51]. The discussed connection between the
kinetic energy and the symmetry of the wavefunction can also be useful in understanding the
close relation between degeneracy, strong electron correlations, itinerant ferromagnetism and
triplet superconductivity observed in some recently discovered materials [52].

In conclusion, we have proposed a generalization of the Roth approach for the degenerate
Hubbard model, providing a fairly reliable description of itinerant ferromagnetism in the
strong coupling regime. The mechanism we have described allows a better understanding of
the phenomenon of metallic ferromagnetism and could be useful to qualitatively understand
some properties of systems with degenerate electron states.

Appendix. The atomic Green function

In the double degenerate case, the choice of the basis set is the following:

A1
iσ = ci1σ , A2

iσ = ni1σ̄ ci1σ , A3
iσ = ni2σ̄ ci1σ ,

A4
iσ = ni2σ ci1σ , A5

iσ = ni1σ̄ ni2σ̄ ci1σ , A6
iσ = ni1σ̄ ni2σ ci1σ ,

A7
iσ = ni2σ̄ ni2σ ci1σ , A8

iσ = ni1σ̄ ni2σ̄ ni2σ ci1σ .
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The structure of the atomic GF (ti j = 0) shown below describes the transitions between
different occupation levels of energy Eα and with spectral weights Pα:

Ga(ω) ≡ 〈〈ci1σ |c†
i1σ 〉〉 =

8∑
α=1

Pα/(ω − Eα);

Ga2(ω) ≡ 〈〈ni1−σ ci1σ |c†
i1σ 〉〉 = P4/(ω − E4) + P6/(ω − E6)

+ P7/(ω − E7) + P8/(ω − E8); . . .

Ga8(ω) ≡ 〈〈ni1−σ ni2−σ ni2σ ci1σ |c†
i1σ 〉〉 = P8/(ω − E8), (A.1)

where

P1 = 〈(1 − ni1σ̄ )(1 − ni2σ̄ )(1 − ni2σ )〉 , E1 = 0;
P2 = 〈(1 − ni1σ̄ )(1 − ni2σ̄ )ni2σ 〉 , E2 = U⊥ − J ;
P3 = 〈(1 − ni1σ̄ )ni2σ̄ (1 − ni2σ )〉 , E3 = U⊥;
P4 = 〈ni1σ̄ (1 − ni2σ̄ )(1 − ni2σ )〉 , E4 = U‖;
P5 = 〈(1 − ni1σ̄ )ni2σ̄ ni2σ 〉 , E5 = 2U⊥ − J ;
P6 = 〈ni1σ̄ (1 − ni2σ̄ )ni2σ 〉 , E6 = U‖ + U⊥ − J ;
P7 = 〈ni1σ̄ ni2σ̄ (1 − ni2σ )〉 , E7 = U‖ + U⊥;
P8 = 〈ni1σ̄ ni2σ̄ ni2σ 〉 , E8 = 2U⊥ + U‖ − J.

The energy shifts corresponding to the Green function (6) (see discussion following (5)).

T1(k) = −
∑
l( �=i)

′
til exp(−ikRil)〈(1 − ni1σ̄ )(1 − ni2σ̄ )(1 − ni2σ )

× (1 − nl1σ̄ )(1 − nl2σ̄ )(1 − nl2σ )〉c

+
∑
l( �=i)

′
til〈(1 − 2ni1σ )(1 − ni2σ̄ )(1 − ni2σ )c†

i1σ̄ cl1σ̄ 〉

−
∑
l( �=i)

′
til exp(−ikRil)〈(1 − ni2σ̄ )(1 − ni2σ )c+

i1σ ci1σ̄ c+
l1σ̄

× cl1σ (1 − nl2σ̄ )(1 − nl2σ )〉
+

∑
l( �=i)

′
til exp(−ikRil)〈(1 − ni2σ̄ )(1 − ni2σ )c+

i1σ c+
i1σ̄

× cl1σ̄ cl1σ (1 − nl2σ̄ )(1 − nl2σ )〉
+

∑
l( �=i)

′
til〈(1 − 2ni1σ )(1 − ni1σ̄ )(1 − ni2σ̄ )c+

i2σ cl2σ 〉

−
∑
l( �=i)

′
til exp(−ikRil)〈(1 − ni1σ̄ )(1 − ni2σ̄ )c+

i1σ ci2σ

× c+
l2σ cl1σ (1 − nl1σ̄ )(1 − nl2σ̄ )〉

+
∑
l( �=i)

′
til exp(−ikRil)〈(1 − ni1σ̄ )(1 − ni2σ̄ )c+

i1σ c+
i2σ

× cl2σ cl1σ (1 − nl1σ̄ )(1 − nl2σ̄ )〉
+

∑
l( �=i)

′
til〈(1 − 2ni1σ )(1 − ni1σ̄ )(1 − ni2σ )c+

i2σ̄ cl2σ̄ 〉

−
∑
l( �=i)

′
til exp(−ikRil)〈(1 − ni1σ̄ )(1 − ni2σ ) c+

i1σ ci2σ̄ c+
l2σ̄

× cl1σ (1 − nl1σ̄ )(1 − nl2σ )〉
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+
∑
l( �=i)

′
til exp(−ikRil)〈(1 − ni1σ̄ )(1 − ni2σ )c+

i1σ c+
i2σ̄ cl2σ̄

× cl1σ (1 − nl1σ̄ )(1 − nl2σ )〉.
The notation 〈· · ·〉c stands for the cumulant average (compare with the non-degenerate case
in [23]). Below only the local, k-independent, shifts are shown:

T2 =
∑
l( �=i)

′
til〈(1 − 2ni1σ )[ni2σ (1 − ni2σ̄ )c+

i1σ̄ cl1σ̄

+ ni2σ (1 − ni1σ̄ )c+
i2σ̄ cl2σ̄ + (1 − ni1σ̄ )(1 − ni2σ̄ )c+

i2σ cl2σ ]〉;
· · ·

T8 =
∑
l( �=i)

′
til〈(1 − 2ni1σ )[ni2σ̄ ni2σ c+

i1σ̄ cl1σ̄ + ni1σ̄ ni2σ̄ c+
i2σ cl2σ + ni1σ̄ ni2σ c+

i2σ̄ cl2σ̄ ]〉.

First-order corrections to the spectral weight of the lowest energy sub-bands (non-local terms
are not shown):

P̃1 = P1 − 2

[
1

U‖

∑
l( �=i)

′
til〈(1 − 2niσ )(1 − mi σ̄ )(1 − miσ )a†

i σ̄ alσ̄ 〉

+
1

U⊥

∑
l( �=i)

′
til〈(1 − 2niσ )(1 − ni σ̄ )(1 − miσ )b†

i σ̄ blσ̄ 〉

+
1

U⊥ − J

∑
l( �=i)

′
til〈(1 − 2niσ )(1 − ni σ̄ )(1 − mi σ̄ )b†

iσ blσ 〉
]
. (A.2)
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